
www.manaraa.com

Capturing communication and context in the software project lifecycle
Vera Zaychik, William C. Regli

Abstract Capturing design process knowledge is a com-
plex multidisciplinary problem. The advent and increased
acceptance of digital computer-supported cooperative
work tools enabled us to study how engineering colla-
boration might be captured and archived to support
engineering lifecycle activities. To improve project com-
munications among software engineers and create struc-
tured e-mail archives, we developed an environment called
CodeLink. CodeLink is a design rationale support tool,
integrating e-mail–based collaboration with the software
development process, providing teams of developers with
a means to automatically associate specific code elements
with e-mail messages. In this paper we describe Code-
Link’s architecture, user interface, and the results of an
informal user study. We believe that by integrating
collaborative work tools with development tools, we can
enrich the communication within engineering teams and
build repositories that detail collaborative decisions made
in the development process. These repositories can then be
used to facilitate software maintenance and extract design
rationale.

Keywords Collaborative design, Computer-supported
cooperative work, Software design, Software project
management, Software maintenance

1
Introduction
Software engineering project knowledge is contained
within source code, documentation, requirements and
design documents, bug databases, communications be-
tween developers, and the memories of individual devel-
opers. Project communication and collaborative exchanges
contain a great deal of knowledge about design intent,
rationale, and decision-making that could be harvested to
improve project management and facilitate software
maintenance. However, it is very difficult to extract useful
information from informal communications because these
media (i.e. e-mail or voice conversations) are often poorly
structured or not captured.

While electronic means of communication between
software engineers (e.g. e-mail, instant messaging, com-
puter-supported cooperative work tools) have become
widely used, they still lack support for certain important
factors of the software development process. For example,
in open-source projects, where participation is open to
developers around the world and is not restricted to any
geographic area, e-mail is the dominant communication
medium. This is part of a fundamental trend toward in-
creased use of asynchronous communication instead of
face-to-face meetings: rather than walk to the next cubicle,
we place a request for information at our convenience,
which does not have to be satisfied immediately by the
recipient. While e-mail tools have improved significantly
over the years, they still lack the ability to provide the kind
of context-based support to the collaborative work process
found in a face-to-face meeting.

This paper presents an approach to enable context-
aware e-mail collaboration among software developers.
Informally, context is the sum of information we readily
obtain from the participants by paying attention to our
surroundings and nonverbal cues: the exact subject of
conversation, turn-taking, and so on. It is the collection of
circumstances or conditions under which the communi-
cation act occurs. For example, in face-to-face conversa-
tions, when we want to specify something, we can often
point. Such facilities are not available in e-mail. For the
most basic example in e-mail, when the need arises to
specify a point in a referenced document, the sender is
often forced to describe the location (e.g. third paragraph,
second line or class Foo, function Bar, line 154).

Informal communication contains a great deal of
project-related information, often information not found
anywhere else [39]. The more developers rely on electronic
communications, the greater the quantity of data that can

Research in Engineering Design 14 (2003) 75–88

DOI 10.1007/s00163-002-0027-8

75

Received: 31 July 2002 / Revised: 14 November 2002
Accepted: 21 November 2002 / Published online: 15 February 2003
� Springer-Verlag 2003

V. Zaychik, W.C. Regli (&)
Geometric and Intelligent Computing Laboratory,
Department of Computer Science, Drexel University,
3201 Chestnut Street, Philadelphia, PA, 19104, USA
E-mail: regli@drexel.edu
Fax: +1-215-8951582

Present address: V. Zaychik
Advanced Technology Laboratory,
Embedded Processing Laboratory, Lockheed Martin,
A&E Building, 2 West, 1 Federal Street, Camden, NJ, 08102, USA

This work was supported in part by National Science Foundation
Graduate Research Fellowship and Knowledge and Distributed
Intelligence in the Information Age Initiative Grant CISE/IIS-
9873005. Additional funding was provided by the Office of Naval
Research under Grant N00014-01-1-0618.

Original paper



www.manaraa.com

be available from the communications for future access.
Organizations often maintain e-mail archives of mailing
lists and e-mail discussions in parallel to the software
project files and documentation. Unfortunately, they pro-
vide insufficient search capabilities: the information might
be there, but most people are not willing to sift through
hundreds of messages for the relevant few that deal with a
particular part of the project.

Our approach provides developers with the ability to
create anchored conversations [8] about their software
project by automatically including context hyperlinks to
specific places in a software project source file or docu-
ment. This, in turn, stems the loss of vital project infor-
mation: a message is archived based on the developers’
context at the time it is sent. Our research aims to study
the following questions:

– Can we automatically extract useful project information
from e-mail communications between designers with
minimal interference while avoiding text parsing and
analysis, instead using context extraction at the time of
composition of the message?

– Can we improve communication between developers
by providing tools that allow them to see the relation-
ships between code elements and communications?

To study these issues, we developed a software tool called
CodeLink. CodeLink automates the extraction of project
context and uses it to augment e-mail–based collaboration
as well as build a repository of collaborative life of the design
project. CodeLink does this by incorporating references/
links to specific parts of source code files into an e-mail
message using formal representations of the collaborative
process and design context. When developers compose
project-related e-mails, the source code files they are
working on are analyzed to extract semantic information
(e.g. to what functions are the developers referring?), and a
code snapshot is taken that is archived in a dedicated con-
current versions system (CVS) [13] repository. To formalize
the representations of message context and contents, we
developed a message ontology based on the DARPA Agent
Markup Language (DAML). All e-mail messages containing
code context links inserted in the above-described manner
are archived in a repository and indexed using extracted
semantic information. These communications can be an-
notated, linked to any URL, and arbitrarily grouped. By
using a semantically grounded language like DAML, we can
use DAML-based inferencing tools to later reason about the
captured design process. Figure 1 provides an overview of
the overall system architecture.

This work introduces a new way to actively integrate
computer-supported cooperative work (CSCW) tools, such
as e-mail, with the software design development process.
Using this approach, relationships between code changes
and collaborative discussions about code can be created
and used by developers and project managers to better
understand the thought processes that went into the
creation of a system. We believe that our approach to
representation and active capture of collaborative work
can have applicability in other ‘‘engineering design’’
domains as well, and this point is addressed in [20, 40, 41].

This paper is organized as follows: Sect. 2 provides an
overview of related work; Sect. 3 describes CodeLink in
detail; while Sect. 4 describes a user study we conducted.
Section 5 outlines limitations of the current approach as
well as future research directions.

2
Related research
We briefly describe related research in CSCW, context
awareness, software design and engineering methodology,
and design rationale that has influenced this project.

2.1
CSCW and context awareness
E-mail has become the primary message tool used by 97%
of North American knowledge workers on a regular basis.
It has outpaced other media as the preferred way to receive
or give input during work (66% versus 13% for face-to-
face meetings and 12% for phone) [16]. Mailing lists are
widely used to coordinate open-source projects [12], but e-
mail has also become common when simply communi-
cating with someone in the next office, or even in the same
office [21, 9]. Yet, it still presents many problems when
used for certain tasks, as it is not capable of handling
social context [37], workflow, and negotiation.

One aspect of communication still not well supported
by asynchronous tools is context awareness. In face-to-
face interactions, a great deal of information is expressed
by using nonverbal cues, which help in putting partici-
pants ‘‘on the same page’’ [9]. These cues are usually
classified as context. Context availability can improve
search capabilities in computer databases by enabling
more precise queries, which can result in enhanced recall
and precision of results. Thus, it is important to obtain the
context of e-mail communications at the time of their
creation. Then, search of archived messages can be per-
formed based not only on text parsing, but also on context.

Most context-aware applications have been developed
in the domain of mobile and wearable computing and in
domain-independent groupware, but there are some
exceptions. The closest relative to CodeLink is Anchored
Conversations [8], an application-independent tool for
collaborative authoring that provides a chat utility with
anchors, which act as substitutes for deictic references
(referring to items using words like this, those, here, there).
However, the notion of context is used very narrowly due
to the domain-independent nature of the tool: only enough
information is extracted about the environment to allow
these anchors to be placed unambiguously.

Fig. 1. General approach to the problem

Res Eng Design 14 (2003)

76



www.manaraa.com

A major weakness of existing CSCW applications is that
users have to be introduced to new tools, instead of well-
known or common ones. This results in a disruption of the
design process and possibly in flat rejection of the tool. To
deal with this problem, Grudin [19] suggests building on
existing and accepted tools where possible. A custom
e-mail client that demonstrates a particular functionality is
not likely to include most other features of popular ap-
plications such as Outlook (Microsoft) or Communicator
(Netscape). Another common problem is that for such
tools to be successful, they must be adopted by all mem-
bers of the group [19]. This is commonly referred to as
critical mass or the prisoner’s dilemma. In this research, we
added functionality to a commonly used e-mail system to
increase the chances of acceptance and adoption.

2.2
Software design and software engineering
Despite considerable recent research and industrial activity,
the software engineering process remains more of an art
than an engineering science. Several research directions
have been pursued to improve the existing situation. One
such direction is process modeling, which aims to define
some policies and rules to be followed in a process, and then
create a system to enforce those rules. The resulting systems
are called process-centered software engineering environ-
ments (PSEEs). Such systems usually provide a formal
modeling language to define the policies and rules and a set
of integrated tools to enable the process within the set
framework. There are several exemplary systems of this
kind, for example, SPADE-1 [1], OIKOS [30], EPOS [11],
Promo [14], and PRIME [32]. Promo is an unusual approach
as it is a virtual environment based on MOO concepts.

However, the above-mentioned PSEEs generally do not
support communication, especially synchronous commu-
nication. SPADE-1 supports only asynchronous commu-
nication through integration with an ImagineDesk toolkit
[2]. Even in that case the communication is not an integral
part of a software process, but rather another tool available
during the process. On the other hand, the CodeLink
system considers all communication to be an important
part of the process that requires tighter integration with
development tools than what is currently available.

Other relevant works in the field of software engineer-
ing and methodology describe techniques and approaches
to integrate different tools more efficiently and effectively.
Engels et al. [15] describe an approach to building inte-
grated software development environments using attrib-
uted graphs to model and implement object structures
such as software documents and their relationships. The
resulting approach is suited for environments developed
from scratch, but not as well suited to integration of
already-existing tools. Greif et al. [18] describe authors’
experiences implementing a distributed collaborative ed-
iting system (CES) using a special-purpose programming
language, Argus. In comparison, CodeLink integration is
based on specific engineering tools and the specific needs
of developers. The formal part of our integration process
uses a structured modeling language to describe the
context information extracted during the communication.

2.3
Design rationale
Over the past decade, and enabled by the Internet,
software projects have become increasingly decentralized.
Software projects quickly grow too large to be handled
locally, forcing outsourcing of development activities to
remote locations. Combined with high turnover rates,
which deplete the human expertise and knowledge accu-
mulated over a long period of time, the problem of coor-
dination is becoming more and more complex. One issue
is how to preserve and communicate to others the how and
why of development, information that is very valuable
during the maintenance and evolution of software. The
term most widely used in the research literature to
describe these concepts is design rationale (DR).

Documenting DR during the design process has been
shown to be vital to improved correctness and speed in both
the engineering [4] and the software [3] domains. In areas
that mainly use ad-hoc tools, such as open-source projects,
the need is felt most strongly: although mailing lists of
communications between developers are archived and
available online, the lack of structure of these archives
creates a barrier to effective retrieval and management, and
thus an entry barrier for new developers to join projects [12].

Design rationale is an explanation of why an artifact, or
some part of an artifact, is designed as such [26]. It in-
cludes all the background knowledge about the artifact,
such as trade-offs, decisions made, alternatives considered,
and deliberation. Many systems and approaches to DR
have been created over the years. All approaches in current
research can be categorized along the lines of the data is
structured, captured, and retrieved, and whether the
design is process- or feature-oriented [35].

Where the domain and problems are vague and/or
poorly understood, process-oriented systems are used.
Process-oriented systems treat DR as an explicit history of
the design process. In feature-oriented software systems,
the notion of ‘‘task’’ is emphasized, and specific knowledge
and rules of the domain are used. The design rationale is
stored and represented using either an argumentation-
based or description-based approach. The argumentation-
based approach uses graphical representations for storing
arguments about the artifact. This is the most widely used
approach, and many different argumentation models have
been created. The descriptive approach records the history
of design steps (who did what, and when) and is mostly
used in dynamic design domains for solving vague prob-
lems. Whichever representation is used, all information
capture happens either via user intervention or automat-
ically, or by some mixture of both. The approach de-
scribed in this paper focuses on automatic procedures,
which are described in more detail in Sect. 3.2. In other
systems, the retrieval of design rationale is usually done by
some combination of navigation and query by the user,
but several systems in the literature also use automatic
trigger methods to inform the designer of the availability
of information. The latter method can be implemented as
an agent looking over one’s shoulder and critiquing the
design, or it can be simply a notification of the availability
of additional information.

V. Zaychik et al.: Capturing communication and context in the software

77



www.manaraa.com

Although most current DR systems are either com-
pletely generic or tailored to solve specific engineering or
architectural design problems, several systems have been
developed for software engineering. Comet [28], a com-
mitment-based system for sensor-based tracker software,
uses explicit representation and reasoning with commit-
ments to aid the software development, especially when
considering reuse of or change to a certain module. Comet
analyzes source code to get commitments (structure and
behavior specifications of modules) to perform impact
analysis. Developers can also explicitly state commitments.
The cooperative maintenance network-centered hyper-
textual environment (COMANCHE) [6], a multiuser
language-independent environment for cooperative
maintenance, allows different programmers to concur-
rently access and manipulate information related to
maintenance requests, the design and implementation
decisions made, and their motivations. It allows pro-
grammers to annotate any form of textual documents to
provide rationale in the small, that is, rationale concerned
with implementation activities (as opposed to rationale in
the large, which is concerned with design activities). The
process and product information system (PPIS) [29], an
information and browsing system for software design and
evolution, provides a general-purpose hypertext environ-
ment. Designers can manipulate objects and attach links
and annotations to them.

Since design rationale research originally began with
the argumentation approach, most systems to date rely on
user intervention to gather information. This approach has
met with limited success, however, because it demands
substantial time and attention to enter information [7], or
alters the design process [10]. Designers are reluctant to
document their actions during the detailed design process
[17], and there are significant difficulties in getting them to
use argumentation schemas to structure their thinking
during real design tasks [5]. As a result, several automatic
design rationale capture systems have been developed in
the last ten years.

There are two general approaches to automatic design
rationale capture. The first approach creates a system
specialized for a certain domain with well-defined se-
mantics and/or places certain constraints on the design
process. The software architecture analysis method
(SAAM) [25] is a scenario-based method for impact
analysis of software systems. SAAMPad [36], a meeting
room environment centered around an electronic white-
board, augments the SAAM for capturing the architectural
rationale of an evolving software project through auto-
mated capture, integration, and access to the discussions
and artifacts produced during the SAAM session. A
session consists of a discussion by three to ten people
centered around the architectural diagrams on the white-
board, and digital streaming media technology is utilized
for recording. Timestamps are used to track important
activities occurring during the discussion. SAAMPad
supports only the SAAM process, however, and would not
be as effective for other methods. Another system, the
rationale construction framework (RCF) [31], monitors
designer interactions within a CAD environment during
the detailed design phase to produce a process history. The

user’s actions are grouped into meaningful semantic
structures, which are interpreted relative to design meta-
phors to explain the changes to the artifact. For example,
the one-to-one part substitution metaphor captures the
notion that the designer has swapped one functional
component for another. Unfortunately, this method places
certain constraints on the design process and relies on
manual annotations of artifacts for richer semantics.

Another general approach to automatic design rationale
capture is based on the communications perspective. This
perspective states that design discourse, i.e. naturally oc-
curring communication among the group members in the
process of design, contains design rationale, and that it can
be captured without user intervention by recording the
thoughts expressed in communication rather than shaping
them by requiring explicit argumentation. A study of de-
sign teams involved in conceptual mechanical design by
Yen et al. [39] showed that formal reports accounted for
only 5% of the total noun phrases, while hypermail ar-
chives (e-mail) contained 43%. The noun phrase metric for
engineering design has been introduced by Mabogunje
[27] to assess the design process and predict design team
performance. A strong correlation was found between the
success of a product as measured by expert evaluation and
the number of distinct noun phrases found in documen-
tation. However, the general disadvantage of the automatic
capture method is that the recorded information often
lacks structure and is difficult to retrieve in a systematic
and meaningful manner.

Most communication-based systems allow users to
import multimedia data and hyperlinks between artifacts
and other data. The result is a web of information with
links to requirements, deliberations, simulation, and
analysis results. This is an electronic equivalent of a design
notebook. The HOS (hyper-object substrate) system [23]
provides an environment for computer network design
with facilities to import e-mail and news files. The struc-
tured rationale is supported through incremental formal-
ization by using simple text analysis and domain
knowledge. HOS makes suggestions for formalization to
the user for possible links within the acquired information.
While the burden of importing relevant information into
the system stays with the designer, once the information is
inserted, it can be linked to other objects. PHIDIAS [23]
provides functionality for two- and three-dimensional
graphical design, design argumentation, multimedia
information retrieval, and knowledge-based critiquing. It
uses graph-based algorithms in a hypermedia network.
REMAP/MM [34], a prototype decision support system,
provides a graphical interface to synchronous team
deliberation and hyperlinks among data records and
multimedia objects.

When the communication information captured is not
structured in a formal way, but is instead just a web of
hyperlinked objects, then it is not really a design rationale
environment in the strict sense of the definition. Rather, it
is a design history environment. The difference is that in
design history software, explanations and answers to
specific queries about the data are not provided. Rather,
the user has to look through the supporting documenta-
tion to find the answers. The environment merely provides

Res Eng Design 14 (2003)

78



www.manaraa.com

a convenient way to attach and later locate the relevant
information. OzWeb [24], a hypercode environment for
software development, uses WWW technology (HTTP and
HTML) to provide access to source code and supporting
documentation and allows the incremental addition of
links as useful connections are discovered. Recall [39]
facilitates and records sketch activity along with video
conferencing during conceptual design deliberations.
Personal electronic notebook with sharing (PENS) [22] is
an authoring client for the Web, that is, an electronic
notebook for design notes that requires no knowledge of
HTML. It has been used by design teams for group pro-
jects in an electromechanical design course at Stanford
University. The main features of this tool are that it is
lightweight and it works off-line.

The main disadvantage of systems that require the user
to import data is that the effort required is too great with
no clear short-term value. In order for a DR capture tool to
be successful, the users either have to perceive a clear
benefit to using the system, or the effort required has to be
minimal [19]. We counter this problem by automatically
capturing the e-mail exchanges between the developers
and providing the ability to include deictic references.

3
CodeLink: approach, architecture and implementation
Our approach is based on the following observations:

1. Designers and software developers resent interruptions
and resist process changes. As a result, manual design
rationale capture methods have been generally unsuc-
cessful in industry. The goal is to capture process
knowledge with minimum overhead and the least
interference possible.

2. Automatic capture methods have made some headway,
but encounter the problem of lack of structure. Informal
communications such as e-mail exchanges are easy to
capture, but it is difficult to retrieve needed information
from them efficiently. This informal communication is
still important because it contains a great deal of
process and product information.

3. E-mail applications are domain-independent tools.
While this fact has lead to wide acceptance of e-mail in
the workplace, it has also caused the loss of contextual
information in communication. Users often find work-
arounds for this problem, but this missing context can
result in vagueness and misunderstanding. Some effort
is required to insert context information manually.

The goal of CodeLink is to automatically and unob-
trusively extract the software development context that
should be associated with e-mail–based project collabo-
ration. CodeLink uses these e-mails, along with code
snapshots, to build a repository that can be searched in a
variety of ways to improve the software development,
management, and maintenance process.

3.1
Approach
To access context information within the development
environment, we couple the e-mail client with the software
development environment. When a developer points to or

is editing a certain piece of code, what information is
relevant and important to communication about this piece
of code? In our approach, there are several important
pieces of information that are available for extraction. Not
all of them are directly necessary for the immediate goal of
referencing a piece of code to the recipients of the com-
munication, but they become important for structuring
and indexing accumulated communication data.

A message context C for an exchange between software
engineers, is defined as a tuple C=<P,T,E,t>, existing at a
time t, where P is the project information about which the
subjects are communicating, T is the task in which the
author of the message is engaged during and shortly before
the exchange, and E is the personal environment of the
author of the exchange. In turn, P can be defined on
different levels of abstraction:

1. On the topmost level, P consists of the project name and
location. This can also include the package name if
available.

2. When the project is in the development stage (as
opposed to design), an additional level is specific file
information: file name and version.

3. In object-oriented programming, software is broken up
into logical functional units called classes. In such cases,
class name is also part of the project information.

4. Function name: functions are groups of statements
performing a particular action.

5. Line number: the lowest level about which developers
can be communicating is a particular programming
statement.

T is the task on which the user is concentrating, his/her
actions right before the exchange, other source files being
modified. E can be such information as the connection be-
tween the exchange and the recipients of the message: the
e-mail might be addressed to another employee on the same
hierarchy level or to someone higher, a manager perhaps.
This might have significance to the exchange and for later
retrieval, but it is not easily extracted and even more difficult
to analyze. Additionally, a piece of information that can be
very useful but is not easily available is the intent of the
exchange: is the message a request for information, a reply,
or perhaps a notification of change? This information can be
somewhat reliably extracted using speech act theory or by
requiring the author of the message to specify this explicitly.
Extraction of these other important pieces of information is
one of our future research goals.

Of the above levels of abstraction of project informa-
tion, our current implementation considers the following:
file name, line number, enclosing function, enclosing class,
enclosing package, CVS repository containing the file
(project name), and CVS root (project location), i.e. the
central location of the repository that is accessed by all
developers. The version number is not currently extracted.
If CVS version control is not being used for the project, the
name of the directory containing the file is assumed to be
the name of the project.

While this schema originally supported only Java
source files, most programming languages can also map to
this schema in some way. Additionally, function, class, and
package names can take on ‘‘not applicable’’ values. This is

V. Zaychik et al.: Capturing communication and context in the software

79



www.manaraa.com

due to the fact that the line pointed out by the developer
does not have to be part of any function, class, or package.
This is the case, for example, if the selected line is the
import statement at the beginning of the file. In the same
way, C++ code does not have a notion of packages, and
that value is always ‘‘not applicable.’’ Figure 2 provides the
list of languages and context-based cues supported in the
current version of CodeLink.

3.2
CodeLink software architecture
The software architecture consists of several server and
user modules (Fig. 3).

– On the user side, a context extractor and MIME handler
are responsible for enabling sending and receiving
messages with references.

– A Web browser allows access to the online browsing/
search interface to the communication repository, and
to the history of source files annotated with relevant
messages.

– On the server side, several services enable the archiving
of messages sent, the storage of file snapshots, and the
interface to the repository. All server-side components
except for the Web interface belong to a Unix user
created specifically for this purpose. This user runs all
services and is the owner of the CVS and PostgreSQL
databases. (PostgreSQL [33] is an open-source
object-relational database management system.)

3.2.1
Context extractor
The context extractor, when invoked by the user, analyzes
the source code and extracts any relevant information.

This information is encoded using a DARPA Agent
Markup Language (DAML) ontology and inserted into the
e-mail message as a MIME attachment of type DAML/
code-link. At the same time, a snapshot of the source file is
taken and sent to the CVS access control module using a
CVSPUT request. Thus only the context link is attached to
the message, and the files themselves are not. Currently, a
snapshot is taken every time a piece of code is referenced,
even if it is the same piece of code in the same e-mail
message. This is not very efficient, and this issue will be
addressed in the future. See Fig. 4 for an example of
context extraction during the link inclusion process.

DAML is based on the resource description framework
(RDF) and the extensible markup language (XML),
developed by the World Wide Web Consortium (W3C)
and semantic Web communities. DAML provides a set of
constructs to flexibly describe knowledge, to create on-
tologies, and to mark-up information so that it is machine-
readable. A main motivation behind the development of
this language is to describe information contained in Web
pages so that computer agents can read and interpret
them; however, it can also be used as a knowledge-repre-
sentation language. Currently, hypertext markup language
(HTML) is used for these purposes, but it is not well suited
for computer interpretation and understanding. XML was
developed by the W3C so that custom tags can be defined
to provide metadata markup. XML is sufficient to describe
the syntax of the information, but not the semantics. RDF,
on the other hand, can describe semantics, but only on a
limited level. For example, only range and domain con-
straints can be put on the properties, while other restric-
tions are needed for rich representation. Additionally,
sometimes properties of properties need to be specified

Fig. 2. Context equivalents for different languages

Fig. 3. CodeLink software architecture

Fig. 4. An example of context extraction during the context
link inclusion process

Res Eng Design 14 (2003)

80



www.manaraa.com

(for example, to say that a property is unique, transitive,
and so on). RDF does not allow for this. Necessary and
sufficient conditions for class membership, as well as
equivalence or disjointedness of classes cannot be speci-
fied using RDF. For all these reasons an extension to RDF
using XML syntax was developed and called DAML. DAML
uses a concept of namespaces to allow reuse of ontology
libraries. This means that when a certain concept is used
(class or property), the ontology of its origin needs to be
specified. This avoids clashes between different libraries
and definitions.

We use DAML for two primary reasons. First, DAML is
extremely flexible and extensible. Our DAML ontologies
for context and collaboration can be improved and re-
fined, extended to other collaboration modalities (e.g.
audio conferencing), and remain backward-compatible
with our initial definitions. Second, DAML-based context
descriptions are semantically grounded and suitable for
use downstream by inference tools that extract design
rationale patterns. See Fig. 5 for one possible message
ontology with entities, properties, and inheritance
hierarchy.

Any number of context references/links can be inserted
in any particular e-mail message. Any message containing
references to code is automatically forwarded to the ar-
chival server. The user can also independently cc: or bcc:
any message he/she feels is important to the server itself as
it has a dedicated e-mail address.

3.2.2
MIME handler
Once the recipient receives the message, code references
can be displayed using a special MIME handler for DAML/
code-link attachments. This handler parses the DAML-
encoded attachment and sends a CVSGET request to the
server specified in the reference. It gets the file back and
displays it as an HTML file with a bookmark to the
sender’s selection.

3.2.3
CVS access control service
On the server side, a special CVS repository is set up for
referenced code files exclusively for storing the instanta-
neous state of the world at each collaborative exchange
(hence, it is not accessed directly by users). Rather, a
custom access control service receives CVSGET and
CVSPUT requests and fulfills them. When fulfilling a
CVSPUT request, the method of retrieval and the version
number of the file are returned. The file requested is
returned for CVSGET requests. In both cases, if the request
is faulty an error is returned to the client. Several client
requests can be handled concurrently. CVSGET requests
are also received from the Web browsing/search interface.

3.2.4
Archival server
The archival server receives all the e-mail messages from
the e-mail server and archives them in the project repos-
itory. It parses the messages and the DAML/code-link
attachments and saves them to a PostgreSQL database. The
repository has a Web browsing/search interface (Fig. 6).
This interface supports browsing of messages by author,
date, project name and location, package, class, and
function names. The messages can also be grouped and
then browsed by these groups. The users can add com-
ments and context links to any message in the database.
While browsing, the users can narrow their queries if their
current browsing criteria return too many matches. See

Fig. 5. Message ontology with entities, inheritance, and properties

Fig. 6. The main browsing and search interface. A browsing
criterion can be selected from the drop-down box. To search,
up to three strings combined using and/or can be entered in
specified search criteria

V. Zaychik et al.: Capturing communication and context in the software

81



www.manaraa.com

Fig. 7 for an example of Web interface browsing by project
name. Figure 8 shows results of browsing the archive by
package name. Finally, Fig. 9 shows an example of a
code-link activated through the Web interface.

3.2.5
History-annotated code
Another module annotates the source file with context
links to the messages about specific lines of code by

interfacing to the message database. This module can be
very useful since it maps messages back to the artifact,
presenting them in the original context, while not requir-
ing tight integration to or storage in the artifact.

3.3
Implementation
The above-described architecture has been implemented
in a prototype called CodeLink currently running in our
laboratory. For this proof-of-concept prototype we used
the Emacs editor as a source code development environ-
ment. Emacs is a very popular GNU application and is
widely used. It provides a language called Emacs Lisp
(ELisp) with which additional functionalities and modules
can be developed and distributed by any Emacs user. Over
the years Emacs has grown to include version control
interfaces (for example, PCL-CVS is an Emacs interface to
CVS), inline Web browsers (W3), e-mail clients (VM), and
many other extensions. We use VM [38] as an e-mail client
for this project because it runs inside Emacs and is written
entirely in ELisp, which makes it very easy to interface
with and modify. VM is open-source software that has the
usual e-mail client functionality as well as some more
advanced commands for tasks like bursting and creating
digests, message forwarding, organizing message presen-
tation according to various criteria, and creating rule-
based virtual folders. This also means that the module is
system-independent: it runs equally well on Windows,
Unix, or any other platform as long as Emacs and VM are
installed. Although VM is not the most widely used e-mail
client, it offers the same attractive qualities as Emacs: ease
of integration and extensions. Interfaces of other widely
used clients, such as Outlook (Microsoft), Eudora
(Qualcomm) or Communicator (Netscape), are limited or
difficult to work with.

The context extraction is written in ELisp and uses
mode-specific Emacs functions. Currently, Java, C++, C
and Perl modes are supported; however, a context link to
any type of file can be inserted, in which case the function,
class, and package information is not extracted. Figure 2
demonstrates the mapping of context concepts for differ-
ent languages. In Perl, sub is mapped to function name,
and class name is always ‘‘not applicable.’’ When linking to
C source files, both class and package name are always
‘‘not applicable.’’ After extracting language-specific infor-
mation about the selection, we need to find out whether
the current file is a part of some CVS repository. For this,
we look for a directory named CVS in the parent directory
of the file. If such a directory is found, the file Root states
the location of CVS root, and the file Repository gives
the name of the repository/project. However, if such
information is unavailable, the file is assumed not to be a
part of any CVS repository, and the name of the parent
directory is used instead. It is assumed that most groups
do use some version control system and that CVS is the
system of choice for most open-source projects.

It is evident that once the file changes, the context link
might no longer be correct as line numbers would change.
In order to deal with this problem, a copy of the current
state of the file, a snapshot of sorts, is saved and sent to the

Fig. 7. Example of Web interface browsing by project name

Fig. 8. An example of browsing by package name. Clicking on
any package name results in the list of all messages about that
package

Res Eng Design 14 (2003)

82



www.manaraa.com

CVS server. This is achieved by making a direct connec-
tion to the custom access control service with a CVSPUT
request. The service returns the version number of the
snapshot and the exact method with which to get it in the
future, which are included in the context link. This way the
correct version of the file is always displayed when using
links, even when it is different from the current version.
The latter is included in the link so that no one central
CVS repository is required for all users. As long as the
context link contains the method to get to the snapshot,
the particular repository used is not important. This im-
plementation is not the only possible one, nor necessarily
the best one. Currently, the access control service can
become a bottleneck if many requests are dispatched. This
can be avoided by inserting the files as attachments di-
rectly to the e-mail message, but we decided against such
an implementation so as not burden the e-mail message
with many different attachments, which can be confusing
to the user.

The information thus extracted is encoded using a
DAML ontology. The current version of the DAML
ontology is located at the GICL Web site1. The encoded
information is included as a MIME attachment of a new
type of DAML, subtype code-link. When the user executes
a ‘‘send’’ command on the e-mail message with attachment
of type DAML/code-link, such a message is automatically
bcc: to the archive. All server-side services except the Web
interface are run by a special user on a Unix/Linux plat-
form. This user has an account and an e-mail address. All

the messages are forwarded to this e-mail address. In the
current implementation we have this special user set up on
a Linux server.

3.4
Scenarios
To illustrate how this approach translates into engineering
practice, two scenarios of CodeLink in use are presented.

Scenario 1 A group of software engineers is working on
a new software project. Developer 1 is working on error
correction. Previously, the errors were handled using one
error class based on strings. Developer 1 creates several
subclasses to handle different errors more specifically and
checks the code into the code repository the group is using
for version control. Developer 1 then sends an e-mail to
all developers to let them know they need to update their
code to this new error-handling model. The developer
wants to provide code details in the message, refer to spe-
cific parts of the implementation, and provide examples
of use of the new model. The problem is that there is no easy
way to insert context links to specific code instances.

Scenario 2 Developer 1 is assigned a bug dealing with a
certain functionality being unavailable in one of the modes
of the software. The developer traces the code and discovers
that the functionality in question is specifically disabled for
that mode, but no reason is given in the comments. The
developer removes the restriction but the resulting software
produces incorrect results or crashes. It is evident that there
was a reason for the original functionality, but where is this
information contained? The problem is that all changes to
software have underlying reasons, but it is not easy to find
such information after the fact.

Fig. 9. An example message retrieved
through the Web interface and the
code-link from the message to
the snapshot. The line selected by the
author of the message is in bold

1http://edge.mcs.drexel.edu/uvzaychi/DAML/message-ontology.
daml

V. Zaychik et al.: Capturing communication and context in the software

83



www.manaraa.com

In this work we present a systematic approach to deal
with the problems in both of these scenarios. By solving
the first problem we find a solution to the second. In
scenario 1, the problem that the developer is facing is the
lack of an ability to express context information along
with content. Scenario 2 describes a more serious prob-
lem, missing information. Using our approach and
CodeLink, the scenarios can be solved as follows:

Scenario 1 Developer 1 inserts a context link to the
old version of the error-handling code and explains why
such a model was not sufficient for the project. The de-
veloper does that by simply invoking a menu option in
the e-mail client and entering the name of the buffer
containing the code2 (Fig. 10). The developer then inserts
a context link to the new implementation of error cor-
rection using the same method and another link to an
example of how errors should be handled in the future.
Other developers on the team receive the e-mail and are
able to click on the links and see the changes in the code
(Fig. 11). The file in question is opened in a browser and
jumps directly to the selection made by the originator of
the message. Recipients can also look at the example to
make sure they understand the new approach.

To extend this scenario, developer 2 finds an incon-
sistency between the new code and the example and
answers the original e-mail pointing to the problem.
Developer 2 also has a question as to the overall
effectiveness on the new approach. Developer 1 fixes the
inconsistency and answers the question of developer 2.
Other developers also have minor feedback about the
change and answer the original e-mail. Every one of the
above-mentioned messages is forwarded to the archival
database for maintenance purposes.

Scenario 2 Developer 1 retrieves the history of the
source file in question and finds out who wrote the lines
disabling the functionality and when. The developer also
discovers that several messages were sent about the lines
in question at the time of the original implementation
(Fig. 12). Developer 1 reviews the messages (like the one
in Fig. 13) and discovers that the functionality does not
apply to this mode and would not make any sense. One
of the messages also contains a context link to the white
paper on the subject. Developer 1 then removes the
changes he made and also inserts a line of comment in
the code explaining the exception. The bug report is
closed with detailed explanations and links to the mes-
sages in the archive.

Fig. 10. Screenshot of the e-mail message composed by
developer 1 with context links inserted

Fig. 11. Displaying code-links using an external viewer

Fig. 12. Screenshot of code with context links to relevant messages

2Note: this old version of code has to be open in some buffer;
however, it is up to the developer to locate such a version.

Res Eng Design 14 (2003)

84



www.manaraa.com

4
User case study
In order to demonstrate the validity of the CodeLink ap-
proach, we performed a simple user study. The goal of our
study was to assess not only the utility and stability of
CodeLink, but also to identify usage patterns: how will
software developers make use of such a service? The us-
ability can be assessed by evaluating ease of link insertion
and viewing, as well as message browsing and searching.
However, the usefulness is more difficult to determine. In
long-term user studies, users’ tendency to use or not use a
system is the ultimate gauge of whether they find the
system useful.

Our study was informal and attempted to answer the
following questions:

Usability How easy is it to insert a link into an e-mail
message? How much time does it take to insert a link?
What are the conditions under which a user feels the need
to insert a link?
Usefulness Is the system useful to the users in commu-
nicating with their team members? Is the system useful in

providing information about the development process of a
product?
Statistical data How many messages are exchanged by the
developers? What proportion of all e-mail messages ex-
changed by the developers contain links? How many links
are inserted in an e-mail message?

4.1
Study design
CodeLink was made available to four teams of under-
graduate and graduate student software developers, each
consisting of two people working on different projects.
The software was installed by the author, and a short
training session was conducted. All but one of the users
were undergraduate students majoring in computer
science, while the other student was an undergraduate
minoring in computer science. This means that every
software developer participating in the study had at least
one year of programming experience, but most had two to
five years of experience. All projects were ongoing, and
thus certain practices had been established prior to the
introduction of CodeLink into the development process.
Users were instructed to use CodeLink for project
communication in cases when they needed to reference
something specific in code or documentation. This means
that personal e-mails were not affected, and not all project
e-mail messages would involve the use of our software.
The author of CodeLink was available at all times to an-
swer questions and to provide technical assistance with
CodeLink and also with Emacs and VM. For the duration
of the study, all project-related e-mail communication
among the users was saved. The study lasted three weeks.

After 3 weeks of access to the functionality of CodeLink,
users were given a questionnaire consisting of 16 open-
ended questions (see Appendix) and distributed via
e-mail. The time required to answer all questions was
estimated at no more than 15 min. Every user study
participant responded to the questionnaire in full.

4.2
Results
The study resulted in approximately 40 project-related
messages with links. Behavior varied across the groups.
Two teams exchanged about 20 messages each, while the
other teams exchanged almost no messages at all. About
half of all messages exchanged included links; usually one
link was included per message (see Fig. 14 for the
comparative ratio of links in messages).

We believe some straightforward conclusions can be
drawn from this study:

Fig. 13. An example of a message displayed in a Web browser. At
the top the date, author, recipient, and subject of the message
are shown, followed by the body of the message. Any code-link
is a hyperlink. Clicking on a code-link results in a new Web
browser window showing the link. The message can be annotated
with comments and hyperlinks and added to groups

Fig. 14. Percentage of e-mail messages with no, one, or two
code-links included

V. Zaychik et al.: Capturing communication and context in the software

85



www.manaraa.com

1. Users had no or little problem inserting or displaying
links. Some chose to do so quite often. Most of the e-
mail messages with links were meant to point out spe-
cific pieces of code that needed work, had a bug, or that
somebody needed help with.

2. Most user problems were caused by their unfamiliarity
with the e-mail client, VM. Only one developer was a
novice Emacs user, and that person sent the fewest
messages. In short, people better acquainted with the
e-mail client and the development environment were
more likely to compose messages with links.

3. CodeLink was extensively used in a guru–novice sce-
nario, where one teammate knew the product or pro-
gramming language to a much greater extent than the
other. In this case, the guru used links to refer to spe-
cific parts of code for explanation, while the novice used
them to ask questions. E-mail messages composed in
this scenario were very descriptive and contained a
great deal of information about the software code.

4. In several cases users chose to forward an e-mail to the
archive manually. Their stated reasons were that it was
very easy to do and sometimes they wanted to make
sure that the message archive had a copy of the e-mail.
This phenomenon was unexpected at the time of the
design of the user study since such action required
manual effort on the part of the developer, which is
generally avoided.

5. The Web archive search and browsing interface was not
used by the study subjects. The users indicated that
although they thought the archive would be very useful
in the long term, they rarely needed to refer to it shortly
after the exchange of the messages. We believe that the
real utility of the archive would be in long-term software
project maintenance and for use by technical manage-
ment interested in reviewing project process.

6. Users also noted that at times important messages that
should be in the archive could not be sent using the
linking mechanism because they pertained to high-level
concepts and did not deal with any particular lines of
code or even files. This issue is to be expected and
should be addressed in future work on this project.

4.3
Discussion
The manual forwarding of messages to the archive was an
unexpected phenomenon. On the surface, it contradicts
our assumption that users avoid and are annoyed by
manual capture methods. This case is special because the
forwarding process was mostly automated. Users needed
to only enter a predetermined e-mail address in the bcc: or
cc: field of their e-mail messages. The rest of the archival
process took place automatically with no tedious input
process required. At the same time, it shows that users
lacked understanding of some of the principles of the
system: no project information is extracted unless a link is
inserted, and thus all manually forwarded e-mail messages
will only be partially referenced in the archive.

Perhaps one of the best indicators of the usefulness of
the system, continued use by the study subjects after the
study period, produced disappointing results. We were not

able to prove in the short experimental period that
CodeLink was a necessary addition to the developer tool-
box. This result confirms the conclusions of other design
rationale [35] projects: the acceptance and use of new
collaboration and knowledge archive technologies is as
much a management and social issue as a technical issue.

The guru–novice use scenario proved to be most useful
in generating knowledge that could be used in the future
by other members of the group. If real-world integration of
CodeLink into the software development process is to take
place, management and organizational support is re-
quired. The benefits of the system should be outlined to
the users, and there should be organizational incentives
for the improvement of the development process using
this system. This does not mean we advocate organizations
and management forcing their employees to use CodeLink,
but there should be clear support of any practices that
enhance the development process.

The user study did show that, on a small-group project
scale, CodeLink helps improve communication among the
team members. The link insertion process proved to be
intuitive to the users and did not introduce any delay to
communication. A large-scale study of the same type
should be conducted to gather more reliable statistical
data. It is imperative that the e-mail client and the devel-
opment environment used for the study are the ones that
the study subjects already use in their software develop-
ment process. One of the most important results of the
user study is the emergence of the guru–novice commu-
nication pattern. This pattern currently promises to
produce the most e-mail messages that are useful for
information retrieval.

5
Conclusions and future work
This paper presented our work on CodeLink, a tool to
integrate e-mail–based cooperative work with the software
development process. We believe that this work contrib-
utes to existing research in several areas. First, we intro-
duced an approach to integrating generic CSCW tools with
software engineering tools to enable the extraction of
domain-specific context information in developer com-
munications. This approach is very general and can be
applied to other engineering domains as well as to media
other than e-mail (i.e. voice or video conferencing).
Second, we showed informally that the ability to insert
context-specific links into e-mail messages can improve
communications among engineers by reducing the time
required to specify references to code and by removing
ambiguity in text-based code references. This discovery
seemed particularly useful in a novice–guru developer
situation, where a new employee is learning their way
around a large and complex system. Last, the archives of
context-based e-mail communications can be used to
support the software management and maintenance pro-
cess by enabling a wide range of queries, groupings, and
interrogations in order to find the important patterns and
messages that occur during the project lifecycle.

In developing our approach, we created a formal
representation of design communication, collaboration,
and context using DAML. In addition, we created a set of

Res Eng Design 14 (2003)

86



www.manaraa.com

software hooks to integrate e-mail with the software de-
velopment process. Obviously, CodeLink is only a proof-
of-concept and not a complete solution. We envision de-
veloping true knowledge-based agents that autonomously
assist designers during group projects—agents that are
capable of sophisticated reasoning about context and
collaboration and that can actively aid teams of engineers
during complex group work. The CodeLink approach does
not have to be a stand-alone application; rather, it can be a
part of some bigger suite of tools, such as SourceForge.3 In
fact, any system that includes a mailing list can benefit
from integrating an ability to link to code. Hypertext
systems would benefit to an even greater extent because
more pieces of information can be linked.

Among the limitations to our current approach are,
first, that the current prototype system is not very ex-
tensible, i.e. other context information pieces cannot be
easily added or changed mid-project. Thus the context
extraction mechanism and the message archive must be
tailored to the chosen domain, in our case, software en-
gineering. This problem might be solved by using more
advanced database techniques. At the same time, the
DAML ontology would need to be extended to allow for
different domain contexts using inheritance mechanisms.
Second, and more significantly, the current system as-
sumes developers want to send messages with code ref-
erences and that the ratio of such messages to all the
project messages is high. This is a new kind of func-
tionality, not presently seen in commercial e-mail tools
or integrated development environments. We believe that
this functionality does not exist because of a lack of in-
tegration between (usually generic) CSCW tools and a
person’s actual work environment. If future user studies
prove this assumption to be false, then our approach
must be rethought. This ratio depends on many things:
how distributed the work process is, what stage it is in,
and the roles between the developers. For example, in a
mentor–trainee relationship there is a high likelihood of
request–reply exchanges with code references in the re-
plies. From our observations in open-source projects, the
size of the project and the number of developers make a
difference in the ratio of code-related messages. Older
and bigger projects usually draw many participants, and
the ratio becomes smaller. Overall, only numerous user
studies can show how much relevant information can be
captured with the approach described in this paper.

Our current work also does not consider security and
privacy issues, i.e. developers might feel apprehensive
about their messages being archived, since such records
might be used against them in the future (to show their
incompetence, for example). In the current approach not
all messages are archived, only those that are known to
have project-related information due to the links to code.
All other messages are ignored, whether they are personal
or project-related. There is a trade-off between having a
greater sense of security while using the application and
losing project-related messages without links. This
problem should be investigated in detail.

We believe the approach illustrated in this paper is
generally applicable to other collaboration-intensive
engineering domains: mechanical, electrical, civil, and
architectural. This point is discussed in detail in [20,
40]. We chose to deploy the approach for a software
engineering problem mainly because of the ready access
to real software data and programming expertise.
Transferring this approach to an engineering domain
requires dedicated domain expertise to create the
appropriate knowledge representation schema as well as
quantities of real engineering data (i.e. getting code for
large software systems created by students is much
easier than getting professional engineers to part with
their proprietary engineering data and work on a
prototype user study).

Our plans for future work on this project include sev-
eral different areas: visualization of the archive, larger and
more comprehensive user studies, integration with other
communication media, extending and deepening the
notion of context, and performing natural language pro-
cessing combined with different retrieval strategies for
explicit extraction of design rationale.

6
Appendix
This appendix includes the information found in
Scheme 1, User study questionnaire.

Scheme 1. User study questionnaire. Please answer all questions
to the best of your knowledge and understanding. This
questionnaire is meant to establish the usefulness and usability of
CodeLink. It takes about 15 min to complete3http://www.sourceforge.net

V. Zaychik et al.: Capturing communication and context in the software

87



www.manaraa.com

References
1. Bandinelli S, Fuggetta A, Ghezzi C, Lavazza L (1994) SPADE: an

environment for software process analysis, design, and enact-
ment. In: Finkelstein A, Kramer J, Nuseibeh B (eds) Software
process modeling and technology. Research Studies Press,
Baldock, UK

2. Bandinelli S, Di Nitto E, Fuggetta A (1996) Supporting coopera-
tion in the SPADE-1 environment. IEEE Trans Software Eng
22:841–865

3. Bratthall L, Johansson E, Regnell B (2000) Is a design rationale
vital when predicting change impact? A controlled experiment on
software architecture evolution. In: Proc PROFES’00, 2nd Inter-
national Conference on Product Focused Software Process Im-
provement, Oulu, Finland, 20–22 June

4. Brazier FMT, Van Langen PHG, Treur J (1997) A compositional
approach to modelling design rationale. Art Intell Eng Des Anal
Manuf 11:125–139

5. Buckingham-Shum SJ, Hammond N (1994) Argumentation-based
design rationale: what use at what cost? Human–Comp Studies
40:603–652

6. Canfora G, Casazza G, De Lucia A (2000) A design rationale based
environment for cooperative maintenance. Int J Software Eng
Knowledge Eng 10:627–645

7. Carroll JM, Moran TP (1991) Special issue on design rationale.
Human–Comp Interact 6:197–442

8. Churchill EF, Trevor J, Bly S, Nelson L, Cubranic D (2000) An-
chored conversations: chatting in the context of a document. In:
Proc CHI2000 Conference on Human Factors in Computing
Systems, The Hague, April 1–6, ACM, pp 454–461

9. Clark HH, Brennan SE (1991) Grounding in communication. In:
LB Resnick, JM Levine, SD Teasley (eds) Perspectives on socially
shared cognition. American Psychological Society, Washington,
DC, pp 127–149

10. Conklin JE, Burgess Yakemovic KC (1991) A process-oriented
approach to design rationale. Human–Comput Interact 6:
357–391

11. Conradi R, Hagaseth M, Larsen JO, Nguyen MN, Munch BP,
Westby PH, Zhu W, Jacchert ML, Liu C (1994) EPOS: object-
oriented and cooperative process modeling. In: Finkelstein A,
Kramer J, Nuseibeh B (eds) Software process modeling and
technology. Research Studies Press, Baldock, UK

12. Cubranic D, Booth KS (1999) Coordination in open-source soft-
ware development. In: Proc 8th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enter-
prises, Palo Alto, Calif, 16–18 June, IEEE, pp 61–66

13. Concurrent versions system http://www.cvshome.org
14. Doppke JC, Heimbigner D, Wolf AL (1998) Software process

modeling and execution within virtual environments. ACM Trans
Software Eng Methodol 7:1–40

15. Engels G, Lewerentz C, Nagl M, Schafer W, Schurr A (1992)
Building integrated software development environments. 1. Tool
specification. ACM Trans Software Eng Methodol 1:135–167

16. Fadden K, Battles S (2000) Messaging for innovation: building the
innovation infrastructure through messaging practices. Pitney
Bowes, Stamford, USA http://www.usps.com/strategicdirection/
_pdf/executiv.pdf

17. Fischer G, Lemke AC, McCall R (1991) Making argumentation
serve design. Human–Comput Interact 6:393–419

18. Greif I, Seliger R, Weihl W (1992) A case study of CES: a dis-
tributed collaborative editing system implemented in Argus. IEEE
Trans Software Eng 18:827–839

19. Grudin J (1994) Groupware and social dynamics: eight challenges
for developers. Comm ACM 37:92–105

20. Hayes EE, McWherter D, Regli W, Sevy J, Zaychik V (2000)
Software architecture to facilitate automated message recording
and context annotation. In: Berry NM, Leif L (eds) Network in-
telligence: Internet-based manufacturing, Proc SPIE, vol 4208

21. Hollan J, Stornetta S (1992) Beyond being there. In: Proc ACM
Conference on Human Factors in Computing Systems (CHI’92),
Monterey, Calif, 3–7 May, ACM, pp 119–125

22. Hong J, Toye G, Leifer LJ (1995) Personal electronic notebook with
sharing. In: Proc Fourth Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE’95), Berkeley
Springs, West Virg, 20–22 April, IEEE Computer Society, pp 88–94

23. Shipman FM III, McCall RJ (1997) Integrating different perspec-
tives on design rationale: supporting the emergence of design
rationale from design communication. Art Intell Eng Des Anal
Manuf 11:141–154

24. Kaiser GE, Dossick SE, Jiang W, Yang JJ (1997) An architecture for
WWW-based hypercode environments. In: Proc 1997 Interna-
tional Conference on Software Engineering, Boston, 17–23 May,
ACM, pp 3–13

25. Kazman R, Bass L, Abowd G, Webb SM (1994) SAAM: a method
for analyzing the properties of software architectures. In: Proc
International Conference on Software Engineering (ICSE16),
Sorrento, Italy, May, pp 81–90

26. Lee J, Lai K (1991) What’s in design rationale. Human–Comp
Interaction 6:251–280

27. Mabogunje A, Leifer LJ (1997) Noun phrases as surrogates for
measuring early phases of the mechanical design process. In: Proc
9th International Conference on Design Theory and Methodology
(ASME/DETC), Sacramento, ASME

28. Mark W, Tyler S, McGuire J, Schlossberg J (1992) Commitment-
based software development. IEEE Trans Software Eng 18:870–886

29. Monk S, Sommerville I, Pendaries JM, Durin B (1995) Supporting
design rationale for system evolution. In: Schäfer W, Botella P
(eds) Proc 5th European Software Engineering Conference
(ESEC’95), Sitges, Spain, 25–28 September, Springer, Berlin
Heidelberg New York, pp 307–323

30. Montangero C, Ambriola V (1994) OIKOS: constructing process-
centered SDEs. In: Finkelstein A, Kramer J, Nuseibeh B (eds)
Software process modeling and technology, Research Studies
Press, Baldock, UK

31. Myers KL, Zumel NB, Garcia P (1999) Automated capture of ra-
tionale for the detailed design process. In: Uthurusamy R, Hayes-
Roth B (eds) Eleventh Conference on Innovative Applications of
Artificial Intelligence, Orlando, 18–22 July, AAAI, Menlo Park,
Calif, pp 876–883

32. Pohl K, Weidenhaupt K, Domges R, Haumer P, Jarke M, Klamma
R (1999) Prime — toward process-integrated modeling environ-
ments. ACM Trans Software Eng Methodol 8:343–410

33. http://www.postgresql.org
34. Ramesh B, Sengupta K (1995) Multimedia in a design rationale

decision support system. Decision Support Syst 15:181–196
35. Regli WC, Hu X, Atwood M, Sun W (2000) A survey of design

rationale systems: approaches, representation, capture and re-
trieval. Eng Comp 16:209–235

36. Richter H, Schuchhard P, Abowd GD (1999) Automated capture
and retrieval of architectural rationale. In: Online Proc First
Working IFIP Conference on Software Architecture (WICSA’99),
San Antonio, Tex, 22–24 February, Kluwer Academic, Dordrecht

37. Sproull L (1984) The nature of managerial attention. In: Sproull L,
Larkey P (eds) Advances in information processing in organiza-
tions. JAI, Greenwich, Conn, pp 9–27

38. http://www.wonderworks.com/vm
39. Yen SJ, Fruchter R, Leifer L (1999) Facilitating tacit knowledge

capture and reuse in conceptual design activities. In: Proc 11th Int
Conference on Design Theory and Methodology, Las Vegas, USA,
12–16 September, ASME, DETC99/DTM-8781

40. Zaychik V, Hewett T, Sevy J, Regli WC (2000) Evaluating collab-
orative engineering environments. In: IEEE Eighth International
Workshops on Enabling Technologies: Infrastructure for Collab-
orative Enterprises (WETICE), Gaithersburg, Maryland, 14–16
June, pp 118–124

41. Zaychik V, Hewett T, Sevy J, Regli WC (2000) Issues in building
and evaluating networked engineering environments. In: Cugini
U, Wozny M (eds) Fourth IFIP WG 5.2 Workshop on Knowledge
Intensive CAD (KIC-4), International Federation for Information
Processing (IFIP) Working Group 5.2, Parma, Italy, 22–24 May,
pp 259–265

Res Eng Design 14 (2003)

88



www.manaraa.com


